On the construction of efficient estimators in semiparametric models

نویسندگان

  • J. Forrester
  • W. Hooper
  • H. Peng
  • A. Schick
چکیده

This paper deals with the construction of efficient estimators in semiparametric models without the sample splitting technique. Schick (1987) gave sufficient conditions using the leaveone-out technique for a construction without sample splitting. His conditions are stronger and more cumbersome to verify than the necessary and sufficient conditions for the existence of efficient estimators which suffice for the construction based on sample splitting. In this paper we use a conditioning argument to weaken Schick’s conditions. We shall then show that in a large class of semiparametric models and for properly chosen estimators of the score function the resulting weaker conditions reduce to the minimal conditions for the construction with sample splitting. In other words, in these models efficient estimators can be constructed without sample splitting under the same conditions as those used for the construction with sample splitting. We demonstrate our results by constructing an efficient estimator using these ideas in a semiparametric additive regression model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Ridge Regression Estimator in Semiparametric Regression Models

In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...

متن کامل

Ridge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models

In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...

متن کامل

Locally Efficient Estimation in Censored Data Models: Theory and Examples

In many applications the observed data can be viewed as a censored high dimensional full data random variable X . By the curse of dimensionality it is typically not possible to construct estimators which are asymptotically efficient at every probability distribution in a semiparametric censored data model of such a high dimensional censored data structure. We provide a general method for constr...

متن کامل

Locally efficient semiparametric estimators for functional measurement error models

A class of semiparametric estimators are proposed in the general setting of functional measurement error models. The estimators follow from estimating equations that are based on the semiparametric efficient score derived under a possibly incorrect distributional assumption for the unobserved ‘measured with error’ covariates. It is shown that such estimators are consistent and asymptotically no...

متن کامل

Efficient estimation of semiparametric transformation models for counting processes

A class of semiparametric transformation models is proposed to characterise the effects of possibly time-varying covariates on the intensity functions of counting processes. The class includes the proportional intensity model and linear transformation models as special cases. Nonparametric maximum likelihood estimators are developed for the regression parameters and cumulative intensity functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003